### metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### fac-Aqua(2-carboxyethyl- $\kappa^2$ C,O)trichloridotin(IV)–1,4,7,10,13-pentaoxacyclopentadecane–water (1/1/2)

# Edward R. T. Tiekink,<sup>a</sup>\* James L. Wardell<sup>b</sup>‡ and Solange M. S. V. Wardell<sup>c</sup>

<sup>a</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, <sup>b</sup>Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and <sup>c</sup>CHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland

Correspondence e-mail: edward.tiekink@gmail.com

Received 26 March 2010; accepted 26 March 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean  $\sigma$ (C–C) = 0.005 Å; *R* factor = 0.027; w*R* factor = 0.088; data-to-parameter ratio = 14.0.

In the title compound,  $[Sn(C_3H_5O_2)Cl_3(H_2O)]\cdot C_{10}H_{20}O_5$ . 2H<sub>2</sub>O, the Sn<sup>IV</sup> atom is octahedrally coordinated within a *fac*-CO<sub>2</sub>Cl<sub>3</sub> donor set, arising from the *C*,*O*-bidentate carboxyethyl ligand, a water molecule and three chloride ligands. In the crystal, supramolecular chains linked by O-H···O hydrogen bonds propagate along the *c* axis These chains are connected into layers in the *ac* plane *via* C-H···O interactions.

#### **Related literature**

For original industrial interest in functionally substituted alkyl-tin compounds, see: Lanigen & Weinberg (1976). For studies concerning the coordination chemistry of functionally substituted alkyl-tin compounds, see: Harrison et al. (1979); Howie et al. (1986); Balasubramanian et al. (1997); Tian et al. (2005); de Lima et al. (2009). For related structures of functionally substituted alkyl-tin compounds, see: Buchanan et al. (1996); Howie & Wardell (2001, 2002). For a review on tincrown ether compounds, see: Cusack & Smith (1990). For related structures of organotin(IV) and tin(IV) halide complexes with crown ethers, see: Barnes & Weakley (1976); Cusack et al. (1984); Amini et al. (1984, 2002); Russo et al. (1984); Valle et al. (1984, 1985); Rivarola et al. (1986); Hough et al. (1986); Bott et al. (1987); Mitra et al. (1993); Yap et al. (1996); Wolff et al. (2009); Wardell et al. (2010). For a related tin compound with a 2-carboxyethyl ligand, see: Somphon et al. (2006). For the synthesis of MeO<sub>2</sub>CCH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>SnCl<sub>3</sub>, see: Hutton & Oakes (1976).





 $\beta = 91.857 (2)^{\circ}$   $V = 2222.33 (16) \text{ Å}^{3}$  Z = 4Mo K\alpha radiation  $\mu = 1.56 \text{ mm}^{-1}$  T = 120 K $0.42 \times 0.20 \times 0.07 \text{ mm}$ 

| 12758 measured reflections             |
|----------------------------------------|
| 3721 independent reflections           |
| 3241 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.037$                  |

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 0.70 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.74 \text{ e } \text{\AA}^{-3}$ 

#### Table 1

Crystal data

 $M_r = 572.42$ 

[Sn(C3H5O2)Cl3(H2O)]--

 $C_{10}H_{20}O_5 \cdot 2H_2O$ 

Monoclinic,  $P2_1/n$ 

b = 29.6516 (13) Å

c = 10.3871 (5) Å

Data collection

Refinement

S = 1.19

 $wR(F^2) = 0.088$ 

3721 reflections

265 parameters

10 restraints

 $R[F^2 > 2\sigma(F^2)] = 0.027$ 

Nonius KappaCCD diffractometer Absorption correction: multi-scan

(SADABS; Sheldrick, 2007) $T_{min} = 0.621, T_{max} = 0.746$ 

a = 7.2193 (2) Å

Selected bond lengths (Å).

| Sn-C1  | 2.148 (3) | Sn-Cl1 | 2.4287 (9) |
|--------|-----------|--------|------------|
| Sn-O1  | 2.284 (2) | Sn-Cl2 | 2.4014 (9) |
| Sn-O1w | 2.234 (2) | Sn-Cl3 | 2.3706 (8) |

#### Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$              | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-------------------------------|----------|-------------------------|--------------|---------------------------|
| O2−H1o···O2w                  | 0.84 (3) | 1.71 (3)                | 2.551 (3)    | 172 (4)                   |
| O1w−H1w···O3w                 | 0.84 (2) | 1.85 (3)                | 2.640 (3)    | 156 (3)                   |
| $O1w-H2w\cdots O4$            | 0.84 (3) | 1.88 (2)                | 2.686 (3)    | 161 (3)                   |
| O2w−H3w···O3 <sup>i</sup>     | 0.84 (2) | 1.89(1)                 | 2.720 (3)    | 172 (3)                   |
| $O2w-H4w\cdots O6^{i}$        | 0.84 (2) | 1.92 (2)                | 2.752 (3)    | 169 (3)                   |
| O3w−H5w···O7                  | 0.84 (2) | 2.02 (3)                | 2.827 (3)    | 162 (3)                   |
| O3w−H6w···O5                  | 0.84 (3) | 1.91 (3)                | 2.744 (3)    | 172 (3)                   |
| C8−H8b···O2 <sup>ii</sup>     | 0.99     | 2.52                    | 3.491 (4)    | 165                       |
| C12−H12b···O3w <sup>iii</sup> | 0.99     | 2.42                    | 3.266 (5)    | 143                       |
|                               |          |                         |              |                           |

Symmetry codes: (i) x, y, z - 1; (ii) x + 1, y, z + 1; (iii) -x, -y, -z + 1.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997), *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

<sup>‡</sup> Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

JLW acknowledges support from CAPES and FAPEMIG (Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5380).

#### References

- Amini, M. M., Foladi, S., Aghabozorg, H. & Ng, S. W. (2002). Main Group Met. Chem. 25, 643–645.
- Amini, M. M., Rheingold, A. L., Taylor, R. W. & Zuckerman, J. J. (1984). J. Am. Chem. Soc. 106, 7289–7291.
- Balasubramanian, R., Chohan, Z. H., Doidge-Harrison, S. M. S. V., Howie, R. A. & Wardell, J. L. (1997). *Polyhedron*, 16, 4283–4295.
- Barnes, J. C. & Weakley, T. J. R. (1976). J. Chem. Soc. Dalton Trans. pp. 1786– 1791.
- Bott, S. G., Prinz, H., Alvanipour, A. & Atwood, J. L. (1987). J. Coord. Chem. 16, 303–309.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Buchanan, H., Howie, R. A., Khan, A., Spencer, G. M., Wardell, J. L. & Aupers, J. H. (1996). J. Chem. Soc. Dalton Trans. pp. 541–548.
- Cusack, P. A., Patel, B. N., Smith, P. J., Allen, D. W. & Nowell, I. W. (1984). J. Chem. Soc. Dalton Trans. pp. 1239–1243.
- Cusack, P. A. & Smith, P. J. (1990). Appl. Organomet. Chem. 4, 311-317.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harrison, P. G., King, T. J. & Healey, M. A. (1979). J. Organomet. Chem. 182, 17–36.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Hough, E., Nicholson, D. G. & Vasudevan, A. K. (1986). J. Chem. Soc. Dalton Trans. pp. 2335–2337.

- Howie, R. A., Paterson, E. S., Wardell, J. L. & Burley, J. W. (1986). J. Organomet. Chem. 304, 301–308.
- Howie, R. A. & Wardell, J. L. (2001). Acta Cryst. C57, 1041-1043.
- Howie, R. A. & Wardell, S. M. S. V. (2002). Acta Cryst. C58, m220-m222.
- Hutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123-133.
- Lanigen, D. & Weinberg, E. L. (1976). Adv. Chem. Ser. 157, 134-142.
- Lima, G. M. de, Milne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2009). *J. Mol. Struct.* 921, 244–250. Mitra, A., Knobler, C. B. & Johnson, S. E. (1993). *Inorg. Chem.* 32, 1076–1077.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Rivarola, E., Saiano, F., Fontana, A. & Russo, U. (1986). J. Organomet. Chem. 317, 285–289.
- Russo, U., Cassol, A. & Silvestri, A. (1984). J. Organomet. Chem. 260, 69-72.
- Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Somphon, W., Haller, K. J., Rae, A. D. & Ng, S. W. (2006). Acta Cryst. B62, 255–261.
- Tian, L. J., Zhang, L. P., Liu, X. C. & Zhou, Z. Y. (2005). Appl. Organomet. Chem. 19, 198–199.
- Valle, G., Cassol, A. & Russo, U. (1984). Inorg. Chim. Acta, 82, 81-84.
- Valle, G., Ruisi, G. & Russo, U. (1985). Inorg. Chim. Acta, 99, L21-L23.
- Wardell, S. M. S. V., Harrison, W. T. A., Tiekink, E. R. T., de Lima, G. M. & Wardell, J. L. (2010). Acta Cryst. E66, m312–m313.
- Westrip, S. P. (2010). publCIF. In preparation.
- Wolff, M., Harmening, T., Pöttgen, R. & Feldmann, C. (2009). Inorg. Chem. 48, 3153–3156.
- Yap, G. P. A., Amini, M. M., Ng, S. W., Counterman, A. E. & Rheingold, A. L. (1996). *Main Group Chem.* 1, 359–363.

supplementary materials

Acta Cryst. (2010). E66, m496-m497 [doi:10.1107/S1600536810011633]

# fac-Aqua(2-carboxyethyl- $\kappa^2 C, O$ )trichloridotin(IV)-1,4,7,10,13-pentaoxacyclopentadecane-water (1/1/2)

#### E. R. T. Tiekink, J. L. Wardell and S. M. S. V. Wardell

#### Comment

The so-called, estertin chlorides, RO<sub>2</sub>CCH<sub>2</sub>CH<sub>2</sub>SnCl<sub>3</sub>, as well as the diestertin dichlorides (RO<sub>2</sub>CCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>SnCl<sub>2</sub> (R = Me, Et, *etc.*), were initially made in the 1970's (Hutton & Oakes, 1976) as precursors of organotin mercaptide PVC stabilizers by AZKO Chemie (Lanigen & Weinberg, 1976). This intention has never (yet) been fulfilled industrially. However, interest in the coordination chemistry of such compounds has been maintained until today, with particular interest centering on the coordinating mode of the RO<sub>2</sub>CCH<sub>2</sub>CH<sub>2</sub> ligand, *i.e.* whether mono-or bi-dentate (Tian *et al.*, 2005; Balasubramanian *et al.*, 1997; Harrison *et al.*, 1979; de Lima *et al.*, 2009; Buchanan *et al.*, 1996; Howie & Wardell, 2001; Howie & Wardell, 2002; Howie *et al.*, 1986). We now wish to report the structure of *fac*-aqua(2-carboxyethyl- $\kappa^2 C$ ,*O*)trichloridotin(IV) 1,4,7,10,13-pentaoxacyclopentadecane dihydrate, (I). Crown ether complexes of tin and organotin halides have been variously reported (Barnes & Weakley, 1976; Cusack *et al.*, 1984; Amini *et al.*, 1984; Amini *et al.* 2002; Russo *et al.*, 1984; Valle *et al.*, 1984, 1985; Rivarola *et al.*, 1986; Hough *et al.*, 1986; Bott *et al.*, 1987; Cusack & Smith, 1990; Mitra *et al.*, 1993); Yap *et al.*, 1996; Wolff *et al.*, 2009; Wardell *et al.*, 2010).

The asymmetric unit of (I) comprises an organotin molecule, a 15-crown-5 molecule and two solvent water molecules of crystallisation, Fig. 1. The tin atom exists within a *fac*-CCl<sub>3</sub>O<sub>2</sub> donor set defined by three Cl atoms, chelating C- and O- atoms from the 2-carboxyethyl ligand, and a coordinated water molecule. The C3–O1 [1.233 (4) Å] and C3–O2 [1.289 (4) Å] bond distances, and the pattern on intermolecular hydrogen bonds (see below) indicate the coordination of the carbonyl-O1 atom. The four non-hydrogen atoms of the chelating ligand are planar with the C1–C2–C3–O1 torsion angle being 0.5 (5) °. However, the five-membered chelate ring is not planar as the tin atom lies above the plane through the chelating ligand as indicated in the values of the Sn–C1–C2–C3 and Sn–O1–C3–C2 torsion angles of 9.1 (4) and -9.3 (4) °, respectively. There is only one other tin structure containing a 2-carboxyethyl ligand available in the literature and this adopts the same mode of coordination (Somphon *et al.*, 2006). The Sn–Cl bond distances span a large range, Table 1, with the shorter Sn–Cl3 bond having the Cl3 atom *trans* to the C atom of the organic ligand. The longer Sn–Cl1 bond, Table 1.

There are a large number of O–H···O hydrogen bonding interactions in the crystal structure of (I), Table 2. One of the H atoms of the aqua ligand forms a hydrogen bond with a lattice water (O3w) molecule and the other H atom is connected to an ether-O atom. Each of the H atoms of the O3w water molecule is connected to an ether-O atom. As a result, a nine-membered {···HOH···OC<sub>2</sub>O} synthon is formed, Fig. 2. The hydroxyl group forms a hydrogen bond to the second lattice water molecule which, like the O3w water molecule, forms two donor interactions to ether-O atoms so that each ether-O atom participates in the hydrogen bonding scheme. The hydrogen bonds lead to the formation of supramolecular chains along the *c* axis, Fig. 2. Chains are linked into layers in the *ac* plane via C–H···O interactions, Table 2 and Fig. 3.

#### Experimental

The title compound was obtained from a solution of  $MeO_2CCH_2CH_2CO_2SnCl_3$  (0.360 g, 1 mmol), obtained from  $SnCl_2$ ,  $H_2C=CHCO_2Me$  and HCl (Hutton & Oakes, 1976), and 15-crown-5 (0.220 g, 1 mmol) in MeOH (20 ml). The solution was gently heated for 30 minutes and maintained at room temperature and colourless blades of (I) were harvested after 4 days. m.pt. 423-426 K. IR: v 1654 (C=O) cm<sup>-1</sup>.

#### Refinement

The C-bound H atoms were geometrically placed (C–H = 0.99 Å) and refined as riding with  $U_{iso}(H) = 1.2U_{eq}$  (parent atom). The O—H atoms were refined with the distance restraint 0.840±0.001 Å, and with  $U_{iso}(H) = 1.5U_{eq}$  (parent atom).

#### **Figures**



Fig. 1. The molecular structures of (I) showing displacement ellipsoids at the 50% probability level.



Fig. 2. A view of the supramolecular chain aligned along the c axis in the crystal structure of (I) formed through the agency of O–H···O hydrogen bonding interactions (orange dashed lines).



Fig. 3. A view of the unit cell contents in (I) shown in projection down the c axis and highlighting the C–H···O interactions (blue dashed lines) formed between the chains to form twodimensional arrays that stack along the b axis; O–H···O hydrogen bonds are shown as orange dashed lines.

## fac-Aqua(2-carboxyethyl- $\kappa^2$ C,O)trichloridotin(IV)– 1,4,7,10,13-pentaoxacyclopentadecane–water (1/1/2)

Crystal data

| $[Sn(C_{3}H_{5}O_{2})Cl_{3}(H_{2}O)] \cdot C_{10}H_{20}O_{5} \cdot 2H_{2}O$ | F(000) = 1160                                         |
|-----------------------------------------------------------------------------|-------------------------------------------------------|
| $M_r = 572.42$                                                              | $D_{\rm x} = 1.711 {\rm ~Mg~m}^{-3}$                  |
| Monoclinic, $P2_1/n$                                                        | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn                                                         | Cell parameters from 15234 reflections                |
| a = 7.2193 (2) Å                                                            | $\theta = 2.9 - 27.5^{\circ}$                         |
| <i>b</i> = 29.6516 (13) Å                                                   | $\mu = 1.56 \text{ mm}^{-1}$                          |
| c = 10.3871 (5) Å                                                           | T = 120  K                                            |
| $\beta = 91.857 \ (2)^{\circ}$                                              | Blade, colourless                                     |
| $V = 2222.33 (16) \text{ Å}^3$                                              | $0.42\times0.20\times0.07~mm$                         |
| Z = 4                                                                       |                                                       |

#### Data collection

| Nonius KappaCCD<br>diffractometer                              | 3721 independent reflections                                              |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: Enraf Nonius FR591 rotating an-<br>ode       | 3241 reflections with $I > 2\sigma(I)$                                    |
| 10 cm confocal mirrors                                         | $R_{\rm int} = 0.037$                                                     |
| Detector resolution: 9.091 pixels mm <sup>-1</sup>             | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ |
| $\phi$ and $\omega$ scans                                      | $h = -8 \rightarrow 8$                                                    |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 2007) | $k = -35 \rightarrow 35$                                                  |
| $T_{\min} = 0.621, \ T_{\max} = 0.746$                         | $l = -12 \rightarrow 12$                                                  |
| 12758 measured reflections                                     |                                                                           |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                                      |
|---------------------------------|-----------------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.027$ | Hydrogen site location: inferred from neighbouring sites                                            |
| $wR(F^2) = 0.088$               | H atoms treated by a mixture of independent and constrained refinement                              |
| <i>S</i> = 1.19                 | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0465P)^{2} + 0.1546P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| 3721 reflections                | $(\Delta/\sigma)_{\text{max}} = 0.001$                                                              |
| 265 parameters                  | $\Delta \rho_{max} = 0.70 \text{ e } \text{\AA}^{-3}$                                               |
| 10 restraints                   | $\Delta \rho_{min} = -0.74 \text{ e } \text{\AA}^{-3}$                                              |

#### Special details

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|--------------|--------------|-------------------------------|
| Sn  | 0.22564 (3)  | 0.175614 (7) | 0.29201 (2)  | 0.01417 (11)                  |
| Cl1 | 0.34019 (12) | 0.21445 (3)  | 0.10473 (9)  | 0.0209 (2)                    |
| C12 | 0.43021 (12) | 0.21340 (3)  | 0.44366 (9)  | 0.0211 (2)                    |
| C13 | 0.42241 (11) | 0.11255 (3)  | 0.26495 (9)  | 0.0186 (2)                    |
| 01  | 0.0296 (3)   | 0.13662 (7)  | 0.1555 (2)   | 0.0178 (5)                    |
| O2  | -0.2328 (3)  | 0.14512 (9)  | 0.0433 (2)   | 0.0225 (6)                    |
| H1O | -0.195 (5)   | 0.1229 (8)   | 0.001 (3)    | 0.034*                        |
| O3  | -0.2678 (3)  | 0.08134 (8)  | 0.6564 (2)   | 0.0199 (6)                    |
| O4  | -0.0320 (3)  | 0.15697 (8)  | 0.6706 (2)   | 0.0187 (6)                    |
| O5  | 0.3096 (3)   | 0.12348 (8)  | 0.7855 (2)   | 0.0196 (6)                    |
| O6  | 0.1948 (3)   | 0.03774 (8)  | 0.8827 (2)   | 0.0198 (6)                    |
| 07  | -0.0411 (3)  | 0.00568 (8)  | 0.6891 (2)   | 0.0194 (6)                    |
| O1W | 0.1114 (3)   | 0.13208 (8)  | 0.4460 (2)   | 0.0204 (6)                    |
| H1W | 0.168 (4)    | 0.1089 (7)   | 0.473 (3)    | 0.031*                        |
| H2W | 0.056 (4)    | 0.1448 (10)  | 0.506 (2)    | 0.031*                        |
| O2W | -0.1475 (3)  | 0.07709 (8)  | -0.0930 (2)  | 0.0183 (5)                    |
| H3W | -0.194 (4)   | 0.0799 (13)  | -0.1676 (11) | 0.027*                        |
| H4W | -0.0378 (18) | 0.0677 (12)  | -0.094 (3)   | 0.027*                        |
| O3W | 0.2298 (3)   | 0.06380 (9)  | 0.5896 (2)   | 0.0228 (6)                    |
| H5W | 0.137 (3)    | 0.0475 (10)  | 0.603 (3)    | 0.034*                        |
| H6W | 0.256 (4)    | 0.0798 (11)  | 0.654 (2)    | 0.034*                        |
| C1  | -0.0237 (5)  | 0.21467 (12) | 0.3046 (4)   | 0.0225 (9)                    |
| H1A | -0.0752      | 0.2109       | 0.3911       | 0.027*                        |
| H1B | 0.0051       | 0.2470       | 0.2924       | 0.027*                        |
| C2  | -0.1649 (5)  | 0.19982 (13) | 0.2036 (4)   | 0.0255 (9)                    |
| H2A | -0.1831      | 0.2245       | 0.1404       | 0.031*                        |
| H2B | -0.2845      | 0.1949       | 0.2454       | 0.031*                        |
| C3  | -0.1152 (5)  | 0.15757 (12) | 0.1323 (3)   | 0.0163 (8)                    |
| C4  | -0.3106 (5)  | 0.12264 (12) | 0.5911 (4)   | 0.0195 (8)                    |
| H4A | -0.4466      | 0.1262       | 0.5800       | 0.023*                        |
| H4B | -0.2561      | 0.1227       | 0.5048       | 0.023*                        |
| C5  | -0.2309 (4)  | 0.16057 (12) | 0.6714 (4)   | 0.0201 (8)                    |
| H5A | -0.2713      | 0.1900       | 0.6351       | 0.024*                        |

| H5B  | -0.2740     | 0.1584        | 0.7607     | 0.024*     |
|------|-------------|---------------|------------|------------|
| C6   | 0.0615 (5)  | 0.18000 (11)  | 0.7739 (4) | 0.0198 (8) |
| H6A  | 0.0135      | 0.1697        | 0.8571     | 0.024*     |
| H6B  | 0.0398      | 0.2129        | 0.7661     | 0.024*     |
| C7   | 0.2661 (5)  | 0.17016 (12)  | 0.7691 (4) | 0.0205 (8) |
| H7A  | 0.3118      | 0.1804        | 0.6851     | 0.025*     |
| H7B  | 0.3322      | 0.1877        | 0.8374     | 0.025*     |
| C8   | 0.3375 (5)  | 0.10950 (12)  | 0.9175 (4) | 0.0197 (8) |
| H8A  | 0.2278      | 0.1173        | 0.9678     | 0.024*     |
| H8B  | 0.4471      | 0.1249        | 0.9568     | 0.024*     |
| C9   | 0.3668 (4)  | 0.05926 (12)  | 0.9177 (4) | 0.0216 (8) |
| H9A  | 0.4623      | 0.0511        | 0.8554     | 0.026*     |
| H9B  | 0.4101      | 0.0491        | 1.0044     | 0.026*     |
| C10  | 0.2127 (5)  | -0.00743 (12) | 0.8347 (4) | 0.0236 (9) |
| H10A | 0.2632      | -0.0275       | 0.9034     | 0.028*     |
| H10B | 0.2982      | -0.0079       | 0.7620     | 0.028*     |
| C11  | 0.0241 (5)  | -0.02314 (12) | 0.7904 (4) | 0.0219 (8) |
| H11A | 0.0305      | -0.0546       | 0.7593     | 0.026*     |
| H11B | -0.0617     | -0.0221       | 0.8628     | 0.026*     |
| C12  | -0.2365 (4) | 0.00224 (12)  | 0.6619 (4) | 0.0201 (8) |
| H12A | -0.3045     | 0.0023        | 0.7431     | 0.024*     |
| H12B | -0.2649     | -0.0262       | 0.6153     | 0.024*     |
| C13  | -0.2938 (5) | 0.04203 (12)  | 0.5804 (4) | 0.0192 (8) |
| H13A | -0.2174     | 0.0437        | 0.5031     | 0.023*     |
| H13B | -0.4255     | 0.0392        | 0.5520     | 0.023*     |
|      |             |               |            |            |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$     | $U^{22}$     | U <sup>33</sup> | $U^{12}$     | $U^{13}$      | $U^{23}$      |
|-----|--------------|--------------|-----------------|--------------|---------------|---------------|
| Sn  | 0.01453 (16) | 0.01367 (15) | 0.01420 (17)    | 0.00086 (9)  | -0.00119 (11) | -0.00125 (10) |
| Cl1 | 0.0302 (5)   | 0.0175 (4)   | 0.0149 (5)      | -0.0001 (4)  | -0.0009 (4)   | 0.0030 (4)    |
| Cl2 | 0.0254 (5)   | 0.0216 (5)   | 0.0161 (5)      | -0.0061 (4)  | -0.0053 (4)   | 0.0014 (4)    |
| Cl3 | 0.0191 (4)   | 0.0172 (4)   | 0.0195 (5)      | 0.0051 (3)   | 0.0019 (4)    | 0.0019 (4)    |
| 01  | 0.0169 (13)  | 0.0175 (12)  | 0.0188 (14)     | 0.0026 (10)  | -0.0062 (10)  | -0.0055 (11)  |
| O2  | 0.0168 (13)  | 0.0307 (15)  | 0.0196 (15)     | 0.0026 (11)  | -0.0035 (11)  | -0.0100 (13)  |
| O3  | 0.0264 (14)  | 0.0175 (13)  | 0.0155 (14)     | 0.0019 (10)  | -0.0053 (11)  | -0.0021 (11)  |
| O4  | 0.0169 (13)  | 0.0208 (13)  | 0.0184 (15)     | -0.0001 (10) | 0.0010 (11)   | -0.0043 (12)  |
| O5  | 0.0248 (13)  | 0.0202 (13)  | 0.0138 (15)     | -0.0001 (10) | 0.0028 (11)   | -0.0006 (11)  |
| O6  | 0.0137 (12)  | 0.0207 (13)  | 0.0248 (15)     | 0.0007 (10)  | -0.0010 (11)  | -0.0024 (11)  |
| O7  | 0.0178 (13)  | 0.0166 (12)  | 0.0240 (15)     | -0.0002 (10) | 0.0019 (11)   | 0.0037 (11)   |
| O1W | 0.0256 (14)  | 0.0191 (13)  | 0.0169 (14)     | 0.0009 (11)  | 0.0074 (11)   | -0.0007 (12)  |
| O2W | 0.0178 (13)  | 0.0218 (13)  | 0.0149 (14)     | 0.0031 (11)  | -0.0034 (10)  | -0.0008 (12)  |
| O3W | 0.0274 (15)  | 0.0230 (14)  | 0.0183 (15)     | -0.0063 (11) | 0.0049 (12)   | -0.0037 (12)  |
| C1  | 0.0188 (19)  | 0.023 (2)    | 0.026 (2)       | 0.0051 (15)  | -0.0010 (16)  | -0.0038 (17)  |
| C2  | 0.0254 (19)  | 0.026 (2)    | 0.025 (2)       | 0.0078 (17)  | -0.0026 (17)  | -0.0091 (18)  |
| C3  | 0.0143 (18)  | 0.0206 (19)  | 0.014 (2)       | -0.0030 (15) | 0.0047 (15)   | 0.0044 (17)   |
| C4  | 0.0179 (18)  | 0.024 (2)    | 0.017 (2)       | 0.0047 (15)  | -0.0023 (15)  | 0.0053 (17)   |
| C5  | 0.0195 (19)  | 0.0186 (18)  | 0.022 (2)       | 0.0033 (14)  | 0.0034 (16)   | 0.0022 (17)   |

# supplementary materials

| C6              | 0.028 (2)     | 0.0159 (18)             | 0.015 (2) | -0.0033 (15)    | 0.0020 (16)  | -0.0063 (15) |
|-----------------|---------------|-------------------------|-----------|-----------------|--------------|--------------|
| C7              | 0.025 (2)     | 0.0186 (19)             | 0.018 (2) | -0.0076 (15)    | 0.0036 (16)  | 0.0002 (16)  |
| C8              | 0.0129 (18)   | 0.029 (2)               | 0.017 (2) | -0.0008 (15)    | -0.0035 (15) | -0.0019 (17) |
| C9              | 0.0153 (18)   | 0.029 (2)               | 0.020 (2) | 0.0014 (16)     | -0.0012 (15) | 0.0031 (18)  |
| C10             | 0.027 (2)     | 0.0179 (19)             | 0.026 (2) | 0.0065 (15)     | 0.0012 (17)  | 0.0086 (18)  |
| C11             | 0.028 (2)     | 0.0155 (18)             | 0.023 (2) | -0.0010 (15)    | 0.0019 (16)  | 0.0061 (17)  |
| C12             | 0.0172 (19)   | 0.0192 (19)             | 0.024 (2) | -0.0057 (14)    | 0.0019 (16)  | -0.0086 (17) |
| C13             | 0.0199 (18)   | 0.0215 (19)             | 0.016 (2) | -0.0014 (15)    | -0.0048 (15) | -0.0078 (16) |
| Geometric paran | neters (Å, °) |                         |           |                 |              |              |
| Sn-C1           |               | 2 148 (3)               | C         | 2               | 1 505        | (5)          |
| Sn 01           |               | 2.110(3)<br>2 284(2)    | C2        | 2 СЭ<br>2—Н2А   | 0.990        | )            |
| Sn 01<br>Sn_01w |               | 2.234(2)                | C2        | 2H2R            | 0.9900       | )            |
| Sn—Cl1          |               | 2.237(2)                | C4        | 1               | 1 504        | (5)          |
| Sn—Cl2          |               | 2.1207(9)<br>2 4014 (9) |           | 1—H4A           | 0.9900       | )            |
| Sn—Cl3          |               | 2.3706 (8)              |           | 1—H4B           | 0.990        | )            |
| 01-C3           |               | 1 233 (4)               | C-        | т птад<br>5—Н5А | 0.9900       | )            |
| $0^{2}-0^{3}$   |               | 1.235 (4)               | C.        | 5—H5B           | 0.9900       | )            |
| 02 03<br>02—H10 |               | 0.84(3)                 | Cí        | 5 H3D<br>5      | 1 508        | (5)          |
| 03-C13          |               | 1 417 (4)               | Cf        | 5—Н6А           | 0.990        | )            |
| 03 - C4         |               | 1.429 (4)               | C         | 5—H6R<br>5—H6B  | 0.990        | )            |
| 04              |               | 1.129(1)<br>1.423(4)    | C         | 7—Н7А           | 0.9900       | )            |
| 04 - 05         |               | 1.125 (1)               | C         | 7—H7R           | 0.990        | )            |
| 05-07           |               | 1 428 (4)               | C         | S—C9            | 1 505        | (5)          |
| 05-08           |               | 1.120(1)<br>1 441(4)    | C         | су<br>С—Н8А     | 0.990        | )            |
| 06-09           |               | 1 433 (4)               | C         | S—H8B           | 0.990        | )            |
| 06—C10          |               | 1 436 (4)               | C         | )—Н9А           | 0.990        | )            |
| 07—C11          |               | 1 424 (4)               | C         | )—H9B           | 0.990        | )            |
| 07 - C12        |               | 1 433 (4)               | C         | 10—C11          | 1 497        | (5)          |
| 01W - H1W       |               | 0.84 (2)                | C         | 10—H10A         | 0.9900       | )            |
| O1W—H2W         |               | 0.84(3)                 | C         | 10—H10B         | 0.990        | )            |
| 02W - H3W       |               | 0.839(16)               | C         | 11—H11A         | 0.9900       | )            |
| O2W - H4W       |               | 0.840 (17)              | C         | 11—H11B         | 0.9900       | )            |
| O3W—H5W         |               | 0.84 (2)                | C         | 12—C13          | 1.502        | (5)          |
| O3W—H6W         |               | 0.84 (3)                | C         | 12—H12A         | 0.990        | )            |
| C1—C2           |               | 1.504 (5)               | C         | 12—H12B         | 0.9900       | )            |
| C1—H1A          |               | 0.9900                  | Cl        | 13—H13A         | 0.9900       | )            |
| C1—H1B          |               | 0.9900                  | Cl        | 13—H13B         | 0.9900       | )            |
| C1—Sn—O1W       |               | 86.48 (12)              | 04        | 4—C5—H5B        | 110.2        |              |
| C1—Sn—O1        |               | 78.88 (11)              | C4        | 4—C5—H5B        | 110.2        |              |
| O1W—Sn—O1       |               | 85.19 (9)               | H         | 5A—C5—H5B       | 108.5        |              |
| C1—Sn—Cl3       |               | 159.90 (10)             | 04        | 4—C6—C7         | 108.9        | (3)          |
| O1W—Sn—Cl3      |               | 82.27 (6)               | 04        | 4—С6—Н6А        | 109.9        |              |
| O1—Sn—Cl3       |               | 83.61 (6)               | C         | 7—С6—Н6А        | 109.9        |              |
| C1—Sn—Cl2       |               | 101.97 (10)             | 04        | 4—С6—Н6В        | 109.9        |              |
| O1W—Sn—Cl2      |               | 91.92 (7)               | C         | 7—С6—Н6В        | 109.9        |              |
| O1—Sn—Cl2       |               | 176.94 (6)              | He        | 6A—C6—H6B       | 108.3        |              |
| Cl3—Sn—Cl2      |               | 95.03 (3)               | 05        | 5—С7—С6         | 113.3        | (3)          |
|                 |               |                         |           |                 |              |              |

| C1—Sn—Cl1    | 95.78 (11) | О5—С7—Н7А     | 108.9      |
|--------------|------------|---------------|------------|
| O1W—Sn—Cl1   | 172.17 (7) | С6—С7—Н7А     | 108.9      |
| O1—Sn—Cl1    | 87.89 (6)  | O5—C7—H7B     | 108.9      |
| Cl3—Sn—Cl1   | 93.33 (3)  | С6—С7—Н7В     | 108.9      |
| Cl2—Sn—Cl1   | 94.94 (3)  | H7A—C7—H7B    | 107.7      |
| C3—O1—Sn     | 111.8 (2)  | O5—C8—C9      | 107.5 (3)  |
| С3—О2—Н1О    | 112 (3)    | O5—C8—H8A     | 110.2      |
| C13—O3—C4    | 114.7 (3)  | С9—С8—Н8А     | 110.2      |
| C6—O4—C5     | 114.1 (3)  | O5—C8—H8B     | 110.2      |
| С7—О5—С8     | 114.6 (3)  | С9—С8—Н8В     | 110.2      |
| C9—O6—C10    | 114.6 (2)  | H8A—C8—H8B    | 108.5      |
| C11—O7—C12   | 113.7 (3)  | O6—C9—C8      | 108.7 (3)  |
| Sn—O1W—H1W   | 121 (2)    | О6—С9—Н9А     | 110.0      |
| Sn—O1W—H2W   | 118 (2)    | С8—С9—Н9А     | 110.0      |
| H1W—O1W—H2W  | 111 (3)    | O6—C9—H9B     | 110.0      |
| H3W—O2W—H4W  | 112 (3)    | С8—С9—Н9В     | 110.0      |
| H5W—O3W—H6W  | 111 (3)    | Н9А—С9—Н9В    | 108.3      |
| C2—C1—Sn     | 110.5 (2)  | O6—C10—C11    | 107.8 (3)  |
| C2C1H1A      | 109.6      | O6—C10—H10A   | 110.1      |
| Sn—C1—H1A    | 109.6      | C11—C10—H10A  | 110.1      |
| C2—C1—H1B    | 109.6      | O6—C10—H10B   | 110.1      |
| Sn—C1—H1B    | 109.6      | C11—C10—H10B  | 110.1      |
| H1A—C1—H1B   | 108.1      | H10A—C10—H10B | 108.5      |
| C1—C2—C3     | 114.8 (3)  | O7—C11—C10    | 108.4 (3)  |
| C1—C2—H2A    | 108.6      | O7—C11—H11A   | 110.0      |
| C3—C2—H2A    | 108.6      | C10-C11-H11A  | 110.0      |
| C1—C2—H2B    | 108.6      | O7—C11—H11B   | 110.0      |
| C3—C2—H2B    | 108.6      | C10-C11-H11B  | 110.0      |
| H2A—C2—H2B   | 107.5      | H11A—C11—H11B | 108.4      |
| O1—C3—O2     | 122.1 (3)  | O7—C12—C13    | 107.9 (3)  |
| O1—C3—C2     | 122.5 (3)  | O7—C12—H12A   | 110.1      |
| O2—C3—C2     | 115.4 (3)  | C13—C12—H12A  | 110.1      |
| O3—C4—C5     | 107.7 (3)  | O7—C12—H12B   | 110.1      |
| O3—C4—H4A    | 110.2      | C13—C12—H12B  | 110.1      |
| C5—C4—H4A    | 110.2      | H12A—C12—H12B | 108.4      |
| O3—C4—H4B    | 110.2      | O3—C13—C12    | 107.7 (3)  |
| C5—C4—H4B    | 110.2      | O3—C13—H13A   | 110.2      |
| H4A—C4—H4B   | 108.5      | C12—C13—H13A  | 110.2      |
| O4—C5—C4     | 107.8 (3)  | O3—C13—H13B   | 110.2      |
| O4—C5—H5A    | 110.2      | C12—C13—H13B  | 110.2      |
| C4—C5—H5A    | 110.2      | H13A—C13—H13B | 108.5      |
| C1—Sn—O1—C3  | 10.9 (2)   | C13—O3—C4—C5  | -165.7 (3) |
| O1W—Sn—O1—C3 | 98.2 (2)   | C6—O4—C5—C4   | -159.8 (3) |
| Cl3—Sn—O1—C3 | -179.1 (2) | O3—C4—C5—O4   | 67.1 (3)   |
| Cl2—Sn—O1—C3 | 117.3 (11) | C5—O4—C6—C7   | 174.9 (3)  |
| Cl1—Sn—O1—C3 | -85.5 (2)  | C8—O5—C7—C6   | -87.7 (4)  |
| O1W—Sn—C1—C2 | -95.8 (3)  | 04—C6—C7—O5   | -62.2 (4)  |
| O1—Sn—C1—C2  | -10.0 (3)  | C7—O5—C8—C9   | 175.7 (3)  |
| Cl3—Sn—C1—C2 | -39.8 (5)  | C10—O6—C9—C8  | 158.9 (3)  |

# supplementary materials

| Cl2—Sn—C1—C2 | 173.0 (2)  | 05—C8—C9—O6    | -70.4 (3)  |
|--------------|------------|----------------|------------|
| Cl1—Sn—C1—C2 | 76.7 (3)   | C9—O6—C10—C11  | -174.4 (3) |
| Sn—C1—C2—C3  | 9.1 (4)    | C12—O7—C11—C10 | -164.0 (3) |
| Sn—O1—C3—O2  | 169.4 (3)  | O6-C10-C11-O7  | 61.5 (4)   |
| Sn—O1—C3—C2  | -9.3 (4)   | C11—O7—C12—C13 | 165.3 (3)  |
| C1—C2—C3—O1  | 0.5 (5)    | C4-03-C13-C12  | 178.0 (3)  |
| C1—C2—C3—O2  | -178.3 (3) | O7—C12—C13—O3  | -65.7 (3)  |
|              |            |                |            |

### Hydrogen-bond geometry (Å, °)

| D—H···A                                                                                         | <i>D</i> —Н                                       | $H \cdots A$ | $D \cdots A$ | D—H···A |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------|--------------|---------|
| O2—H1o···O2w                                                                                    | 0.84 (3)                                          | 1.71 (3)     | 2.551 (3)    | 172 (4) |
| O1w—H1w···O3w                                                                                   | 0.84 (2)                                          | 1.85 (3)     | 2.640 (3)    | 156 (3) |
| O1w—H2w···O4                                                                                    | 0.84 (3)                                          | 1.88 (2)     | 2.686 (3)    | 161 (3) |
| O2w—H3w···O3 <sup>i</sup>                                                                       | 0.839 (16)                                        | 1.888 (14)   | 2.720 (3)    | 172 (3) |
| O2w—H4w···O6 <sup>i</sup>                                                                       | 0.840 (17)                                        | 1.92 (2)     | 2.752 (3)    | 169 (3) |
| O3w—H5w…O7                                                                                      | 0.84 (2)                                          | 2.02 (3)     | 2.827 (3)    | 162 (3) |
| O3w—H6w···O5                                                                                    | 0.84 (3)                                          | 1.91 (3)     | 2.744 (3)    | 172 (3) |
| C8—H8b····O2 <sup>ii</sup>                                                                      | 0.99                                              | 2.52         | 3.491 (4)    | 165     |
| C12—H12b···O3w <sup>iii</sup>                                                                   | 0.99                                              | 2.42         | 3.266 (5)    | 143     |
| Symmetry codes: (i) <i>x</i> , <i>y</i> , <i>z</i> -1; (ii) <i>x</i> +1, <i>y</i> , <i>z</i> +1 | l; (iii) − <i>x</i> , − <i>y</i> , − <i>z</i> +1. |              |              |         |

sup-8











